Clear Search sequence regions


  • adult (1)
  • cells number (1)
  • colitis (1)
  • disease and (1)
  • epithelium (2)
  • HDAC3 (8)
  • MHCII (4)
  • mice (3)
  • NF κB (1)
  • t cell subsets (1)
  • t cells (4)
  • th17 cells (2)
  • Sizes of these terms reflect their relevance to your search.

    Aberrant immune responses to resident microbes promote inflammatory bowel disease and other chronic inflammatory conditions. However, how microbiota-specific immunity is controlled in mucosal tissues remains poorly understood. Here, we found that mice lacking epithelial expression of microbiota-sensitive histone deacetylase 3 (HDAC3) exhibited increased accumulation of commensal-specific CD4+ T cells in the intestine, provoking the hypothesis that epithelial HDAC3 may instruct local microbiota-specific immunity. Consistent with this, microbiota-specific CD4+ T cells and epithelial HDAC3 expression were concurrently induced following early-life microbiota colonization. Further, epithelium-intrinsic ablation of HDAC3 decreased commensal-specific Tregs, increased commensal-specific Th17 cells, and promoted T cell-driven colitis. Mechanistically, HDAC3 was essential for NF-κB-dependent regulation of epithelial MHC class II (MHCII). Epithelium-intrinsic MHCII dampened local accumulation of commensal-specific Th17 cells in adult mice and protected against microbiota-triggered inflammation. Remarkably, HDAC3 enabled the microbiota to induce MHCII expression on epithelial cells and limit the number of commensal-specific T cells in the intestine. Collectively, these data reveal a central role for an epithelial histone deacetylase in directing the dynamic balance of tissue-intrinsic CD4+ T cell subsets that recognize commensal microbes and control inflammation.

    Citation

    Emily M Eshleman, Tzu-Yu Shao, Vivienne Woo, Taylor Rice, Laura Engleman, Bailey J Didriksen, Jordan Whitt, David B Haslam, Sing Sing Way, Theresa Alenghat. Intestinal epithelial HDAC3 and MHC class II coordinate microbiota-specific immunity. The Journal of clinical investigation. 2023 Feb 15;133(4)

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 36602872

    View Full Text