Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Trace staphylococcal enterotoxin C (SEC) in food poses a serious risk to human health, and it is vital to develop a sensitive and accurate approach for SEC monitoring. Herein, a surface-enhanced Raman scattering (SERS) aptasensor was developed for the quantitative detection of SEC. SERS-active gold-silver Janus@gold nanoparticles (Au-Ag Janus@Au NPs) were prepared and showed tunable solid and hollow nanostructures by simply controlling the pH values of the reaction system. Solid Au-Ag Janus@Au NPs exhibited intrinsic and enhanced SERS activity due to the intense plasmonic coupling effect between Au dots and Au-Ag Janus NPs, which was 2.27-fold and 17.46-fold higher than that of Au-Ag Janus NPs and hollow Au-Ag Janus@Au NPs, respectively. The attachment of multiple Au dots also protected Ag islands from oxidization, which increased the stability of Au-Ag Janus@Au NPs. Solid Au-Ag Janus@Au NPs served as a label-free, strong, and stable SERS detection probe and achieved sensitive and reliable detection of SEC. The limit of detection was as low as 0.55 pg/mL. This study will expand the application prospects of label-free SERS detection probes in complex systems for food safety monitoring.


Yinjuan Xu, Zhao Jin, Yuan Zhao. Tunable Preparation of SERS-Active Au-Ag Janus@Au NPs for Label-Free Staphylococcal Enterotoxin C Detection. Journal of agricultural and food chemistry. 2023 Jan 18;71(2):1224-1233

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 36606875

View Full Text