Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Several small-molecule covalent inhibitors of KRASG12C have made breakthrough progress in the treatment of KRAS mutant cancer. However, the clinical application of KRASG12C small-molecule inhibitors may be limited by adaptive resistance. Emerging PROTAC strategy can achieve complementary advantages with small molecule inhibitors and improve anti-tumor efficacy. Based on AMG-510, a series of novel KRASG12C-PROTACs were designed and synthesized. The protein degradation assay showed that PROTACs I-1, II-1, III-2 and IV-1 had binding and degradation ability to KRASG12C. III-2 and IV-1 showed potent inhibitory effect on downstream p-ERK and were more potent than AMG-510. Mechanistic studies demonstrated that PROTACs exerted degradation effects through the ubiquitin-proteasome pathway. Using cell lines sensitive to KRASG12C, anti-proliferative activities of compounds were assessed. PROTACs tested showed overall anti-proliferative activities. Besides,the structure-activity relationships (SARs) of KRASG12C-PROTACs were summarized. These results supported the use of the PROTAC strategy to degrade oncogene KRASG12C and provided clues for structural optimization of KRASG12C-PROTACs. Copyright © 2023 Elsevier Ltd. All rights reserved.

Citation

Xiaoyi Zhang, Tong Zhao, Minghao Sun, Pei Li, Mengzhen Lai, Lingfeng Xie, Jiaying Chen, Jian Ding, Hua Xie, Jinpei Zhou, Huibin Zhang. Design, synthesis and biological evaluation of KRASG12C-PROTACs. Bioorganic & medicinal chemistry. 2023 Jan 15;78:117153

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36621179

View Full Text