Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Carminic acid is a natural red dye extracted from the insect Dactylopius coccus. Due to its ideal dying effect and high safety, it is widely used in food and cosmetics industries. Previous study showed that introduction of polyketide synthase (OKS) from Aloe arborescens, cyclase (ZhuI) and aromatase (ZhuJ) from Streptomyces sp. R1128, and C-glucosyltransferase (UGT2) from D. coccus into Aspergillus nidulans could achieve trace amounts of de novo production. These four genes were introduced into Saccharomyces cerevisiae, but carminic acid was not detected. Analysis of the genome of A. nidulans revealed that 4'-phosphopantetheinyl transferase (NpgA) and monooxygenase (AptC) are essential for de novo biosynthesis of carminic acid in S. cerevisiae. Additionally, endogenous hydroxylase (Cat5) from S. cerevisiae was found to be responsible for hydroxylation of flavokermesic acid to kermesic acid. Therefore, all enzymes and their functions in the biosynthesis of carminic acid were explored and reconstructed in S. cerevisiae. Through systematic pathway engineering, including regulating enzyme expression, enhancing precursor supply, and modifying the β-oxidation pathway, the carminic acid titer in a 5 L bioreactor reached 7580.9 μg/L, the highest yet reported for a microorganism. Heterologous reconstruction of the carminic acid biosynthetic pathway in S. cerevisiae has great potential for de novo biosynthesis of anthraquinone dye. Copyright © 2023 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

Citation

Qian Zhang, Xinglong Wang, Weizhu Zeng, Sha Xu, Dong Li, Shiqin Yu, Jingwen Zhou. De novo biosynthesis of carminic acid in Saccharomyces cerevisiae. Metabolic engineering. 2023 Mar;76:50-62

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36634840

View Full Text