Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Ammonia (NH3) plays a vital role in the formation of fine particulate matter (PM2.5). Prior studies have primarily focused on the control of agricultural NH3 emissions, the dominant source of anthropogenic NH3 emissions. The air quality impact from vehicular NH3 emissions, which could be particularly important in urban areas, has not been adequately evaluated. We developed high-resolution vehicular NH3 emission inventories for Beijing and Shanghai based on detailed link-level traffic profiles and conducted atmospheric simulations of ambient PM2.5 concentrations contributed by vehicular NH3 emissions. We found that vehicular NH3 emissions shared high proportions among total anthropogenic NH3 emissions in the urban areas of Beijing (86%) and Shanghai (45%), where vehicular NH3 was primarily emitted by gasoline vehicles. Local vehicular NH3 emissions could be responsible for approximately 3% of urban PM2.5 concentrations during wintertime, and the contributions could be much higher during polluted periods (∼3 μg m-3). We also showed that controlling vehicular NH3 emissions will be effective and feasible to alleviate urban PM2.5 pollution for megacities in the near future.

Citation

Yunjie Wang, Yifan Wen, Shaojun Zhang, Guangjie Zheng, Haotian Zheng, Xing Chang, Cheng Huang, Shuxiao Wang, Ye Wu, Jiming Hao. Vehicular Ammonia Emissions Significantly Contribute to Urban PM2.5 Pollution in Two Chinese Megacities. Environmental science & technology. 2023 Feb 21;57(7):2698-2705

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36700651

View Full Text