Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Ultraviolet disinfection is a promising solution for decentralized drinking water systems such as communal water taps. A potential health risk is enzymatic photorepair of pathogens after UV disinfection, which can result in regrowth of pathogens. Even though photorepair is a known issue, no formal risk assessments have been conducted for photorepair after UV disinfection in drinking water. The main objective was to construct a quantitative microbial risk assessment (QMRA) of photorepair after UV disinfection of drinking water in a decentralized system. UV disinfection and photorepair kinetics for E. coli were modelled using reproducible fluence-based determinations. Impacts of water collection patterns, and wavelength-dependent water container material transmittance, sunlight intensity, and photorepair enzyme absorbance were quantified. After UV disinfection by 16 or 40 mJ/cm2 of < 5-log microorganisms per L, risk of infection did not exceed 1-in-10,000 under conditions permitting E. coli photorepair. Risk from photorepair was less than 1-in-10,000 for photorepair light exposure < 0.75 h throughout the day for UV fluence 16 mJ/cm2 or greater. UV disinfection followed by solar disinfection surpassing photoreactivation during storage reduced risk below 1-in-10,000 for photorepair light exposure > 2.5 h between modelled times of 9 AM - 3 PM. The model can be expanded to other pathogens as UV fluence and photorepair fluence response kinetics become available, and this QMRA can be used to inform the placement of community water access points to reduce risk of photorepair and ensure adequate shelf life of UV disinfected water under safe storage conditions. Copyright © 2023. Published by Elsevier Ltd.

Citation

Daniel Ma, Mark H Weir, Natalie M Hull. Fluence-based QMRA model for bacterial photorepair and regrowth in drinking water after decentralized UV disinfection. Water research. 2023 Mar 01;231:119612

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36706469

View Full Text