Correlation Engine 2.0
Clear Search sequence regions


  • Arf (3)
  • CD105 (1)
  • CD29 (1)
  • CD44 (1)
  • cell cycle (1)
  • collagen type 1 (1)
  • Cyclin (2)
  • dependent (2)
  • Ink4a Arf (6)
  • mice (3)
  • p16 (2)
  • p16Ink4a (3)
  • p19ARF (1)
  • research (3)
  • Scleraxis (1)
  • Tenascin C (1)
  • tendon (5)
  • Tenomodulin (1)
  • tumor suppressor protein p14arf (2)
  • Sizes of these terms reflect their relevance to your search.

    Primary tenocytes rapidly undergo senescence and a phenotypic drift upon in vitro monolayer culture, which limits tendon research. The Ink4a/Arf locus encodes the proteins p16Ink4a/Arf and p14ARF (p19ARF in mice) that regulate cell cycle progression and senescence. We here established an immortalized cell line using tenocytes isolated from Ink4a/Arf deficient mice (Ink4a/Arf-/-). These cells were investigated at three distinct time points, at low (2-5), intermediate (14-17) and high (35-44) passages. Wild-type cells at low passage (2-5) served as controls. Ink4a/Arf-/- tenocytes at all stages were comparable to wild-type cells regarding morphology, expression of tenogeneic genes (collagen type 1, 3 and 5, Scleraxis, Tenomodulin and Tenascin-C), and surface markers (CD29, CD44 and CD105) and form 3D tendon-like structures. Importantly, Ink4a/Arf-/- tenocytes maintained their phenotypic features and proliferation potential in culture for more than 40 passages and also following freeze-thaw cycles. In contrast, wild-type tenocytes underwent senescence starting in passage 6. These data define Ink4a/Arf-/- tenocytes as novel tool for in vitro tendon research and as valuable in vitro alternative to animal experiments. © 2023. The Author(s).

    Citation

    Gil Lola Oreff, Barbara Maurer, Ahmed N ELKhamary, Iris Gerner, Veronika Sexl, Florien Jenner. Immortalized murine tenocyte cells: a novel and innovative tool for tendon research. Scientific reports. 2023 Jan 28;13(1):1566

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 36709227

    View Full Text