Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Lyn, a tyrosine kinase that is activated by double-stranded DNAdamaging agents, is involved in various signaling pathways, such as proliferation, apoptosis, and DNA repair. Ribosomal protein S3 (RpS3) is involved in protein biosynthesis as a component of the ribosome complex and possesses endonuclease activity to repair damaged DNA. Herein, we demonstrated that rpS3 and Lyn interact with each other, and the phosphorylation of rpS3 by Lyn, causing ribosome heterogeneity, upregulates the translation of p-glycoprotein, which is a gene product of multidrug resistance gene 1. In addition, we found that two different regions of the rpS3 protein are associated with the SH1 and SH3 domains of Lyn. An in vitro immunocomplex kinase assay indicated that the rpS3 protein acts as a substrate for Lyn, which phosphorylates the Y167 residue of rpS3. Furthermore, by adding various kinase inhibitors, we confirmed that the phosphorylation status of rpS3 was regulated by both Lyn and doxorubicin, and the phosphorylation of rpS3 by Lyn increased drug resistance in cells by upregulating p-glycoprotein translation. [BMB Reports 2023; 56(5): 302-307].

Citation

Woo Sung Ahn, Hag Dong Kim, Tae Sung Kim, Myoung Jin Ahn, Yong Jun Park, Joon Kim. Phosphorylation of rpS3 by Lyn increases translation of Multi-Drug Resistance (MDR1) gene. BMB reports. 2023 May;56(5):302-307

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36724904

View Full Text