Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Lithium remains the "gold standard" for both acute and maintenance treatment of bipolar disorder (BD), a serious life-long condition characterised by recurrent episodes of depressed and manic mood states. However, lithium has a very narrow therapeutic range (0.4-1.2 mmol L-1) and despite its effectiveness in preventing and reducing mood swings and suicidality, it is a potentially hazardous drug. While it is crucial to carefully monitor lithium plasma levels, the current techniques of lithium monitoring are cumbersome and require frequent blood tests with the consequent discomfort which results in patients evading treatment. Therefore, development of low-cost and facile lithium detection techniques that can be translated into point-of-care devices for personal monitoring will be a major advance in the management of BD. In the current study, we present colorimetric determination of lithium therapeutic levels utilizing test paper strips, based on its reaction with the chromogenic agent Quinizarin. Exposure of Quinizarin-dipped test papers to samples of interstitial fluid (ISF) or dH2O spiked with therapeutic concentrations of lithium resulted in colour changes that were monitored using optical spectroscopy. The acquired spectra from the test papers show spectral variations which are related to lithium concentrations in spiked samples of dh2O and artificial ISF with a coefficient of determination (R2) of 0.9 and 0.8, respectively. Altogether, the spectrophotometric and colorimetric analyses demonstrated strong correlations between the observed colour changes and the concentrations of lithium present in the sample. Therefore, this study has demonstrated that Quinizarin-treated cellulose-based papers are suitable for the precise detection of changes in lithium therapeutic levels. This method is simple and very convenient and serves as a foundation for the future development of a paper-based colorimetric sensor for monitoring of lithium therapeutic levels in ISF and other non-invasive biological fluids.

Citation

Mahsa Sheikh, Meha Qassem, Panicos A Kyriacou. A paper-based colorimetric method for monitoring of lithium therapeutic levels. Analytical methods : advancing methods and applications. 2023 Feb 16;15(7):979-986

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36727666

View Full Text