Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Mitochondrial dysfunction is closely linked with the pathophysiology of several neurodegenerative disorders including Parkinson's disease (PD). Despite several therapeutic advancements related to symptomatic modification of PD pathology, strategies targeting mitochondrial dysfunctions remain largely elusive. Recently, transient receptor potential (TRP) channels have been shown to play a pivotal role in the control of mitochondrial and neuronal functioning in PD. In this study, the effect of 2-aminoethoxydiphenyl borate (2-APB), TRP channel blocker was investigated in the context of mitochondrial dysfunctions in 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-administered Sprague Dawley rats. MPP+-treated SH-SY5Y cells exhibited reductions in cell viability, generation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential. Co-treatment with 2-APB led to an increase in cell viability, reduction in intracellular and mitochondrial ROS and improvement in mitochondrial membrane potential compared to MPP+-treated SH-SY5Y cells. In addition, intranigral administration of MPTP led to a significant reduction in motor function in the rats. Fourteen days of 2-APB (3 and 10 mg/kg, i.p.) treatment improved behavioural parameters. MPTP-induced decrease in complex I activity and mitochondrial potential were also blocked by 2-APB in the mitochondria isolated from the brain regions i.e. midbrain and striatum. MPTP-induced decrease in tyrosine hydroxylase levels were also restored by 2-APB. Moreover, MPTP-induced reduction in proteins involved in mitochondrial biogenesis, viz. peroxisome proliferator-activated-receptor-gamma coactivator and mitochondrial transcription factor-A were increased after 2-APB treatment in vivo. In summary, 2-APB has a promising neuroprotective role in the MPP+/MPTP models of PD via targeting mitochondrial dysfunctions and biogenesis. Copyright © 2023 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

Citation

Bhupesh Vaidya, Mahesh Polepalli, Shyam Sunder Sharma, Jitendra Narain Singh. 2-Aminoethoxydiphenyl borate ameliorates mitochondrial dysfunctions in MPTP/MPP+ model of Parkinson's disease. Mitochondrion. 2023 Mar;69:95-103

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36758857

View Full Text