Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Advanced high-grade serous ovarian cancer (HGSC) is an aggressive disease that accounts for 70% of all ovarian cancer deaths. Nevertheless, 15% of patients diagnosed with advanced HGSC survive more than 10 years. The elucidation of predictive markers of these long-term survivors (LTS) could help identify therapeutic targets for the disease, and thus improve patient survival rates. To investigate the stromal heterogeneity of the tumor microenvironment (TME) in ovarian cancer, we used spatial transcriptomics to generate spatially resolved transcript profiles in treatment-naïve advanced HGSC from LTS and short-term survivors (STS) and determined the association between cancer-associated fibroblasts (CAF) heterogeneity and survival in patients with advanced HGSC. Spatial transcriptomics and single-cell RNA-sequencing data were integrated to distinguish tumor and stroma regions, and a computational method was developed to investigate spatially resolved ligand-receptor interactions between various tumor and CAF subtypes in the TME. A specific subtype of CAFs and its spatial location relative to a particular ovarian cancer cell subtype in the TME correlated with long-term survival in patients with advanced HGSC. Also, increased APOE-LRP5 cross-talk occurred at the stroma-tumor interface in tumor tissues from STS compared with LTS. These findings were validated using multiplex IHC. Overall, this spatial transcriptomics analysis revealed spatially resolved CAF-tumor cross-talk signaling networks in the ovarian TME that are associated with long-term survival of patients with HGSC. Further studies to confirm whether such cross-talk plays a role in modulating the malignant phenotype of HGSC and could serve as a predictive biomarker of patient survival are warranted. Generation of spatially resolved gene expression patterns in tumors from patients with ovarian cancer surviving more than 10 years allows the identification of novel predictive biomarkers and therapeutic targets for better patient management. See related commentary by Kelliher and Lengyel, p. 1383. ©2023 American Association for Cancer Research.


Sammy Ferri-Borgogno, Ying Zhu, Jianting Sheng, Jared K Burks, Javier A Gomez, Kwong Kwok Wong, Stephen T C Wong, Samuel C Mok. Spatial Transcriptomics Depict Ligand-Receptor Cross-talk Heterogeneity at the Tumor-Stroma Interface in Long-Term Ovarian Cancer Survivors. Cancer research. 2023 May 02;83(9):1503-1516

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 36787106

View Full Text