Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Entirely biological human tissue-engineered blood vessels (TEBV) were previously developed for clinical use. Tissue-engineered models have also proven to be valuable tools in disease modelling. Moreover, there is a need for complex geometry TEBV for study of multifactorial vascular pathologies, such as intracranial aneurysms. The main goal of the work reported in this article was to produce an entirely human branched small-caliber TEBV. The use of a novel spherical rotary cell seeding system allows effective and uniform dynamic cell seeding for a viable in vitro tissue-engineered model. In this report, the design and fabrication of an innovative seeding system with random spherical 360° rotation is described. Custom made seeding chambers are placed inside the system and hold Y-shaped polyethylene terephthalate glycol (PETG) scaffolds. The seeding conditions, such as cell concentration, seeding speed and incubation time were optimized via count of cells adhered on the PETG scaffolds. This spheric seeding method was compared to other approaches, such as dynamic and static seeding, and clearly shows uniform cell distribution on PETG scaffolds. With this simple to use spherical system, fully biological branched TEBV constructs were also produced by seeding human fibroblasts directly on custom-made complex geometry PETG mandrels. The production of patient-derived small-caliber TEBVs with complex geometry and optimized cellular distribution all along the vascular reconstructed may be an innovative way to model various vascular diseases such as intracranial aneurysms. © 2023. The Author(s).


Alyssa Brodeur, Alexandre Winter, Vincent Roy, Lydia Touzel Deschênes, François Gros-Louis, Jean Ruel. Spherical rotary cell seeding system for production of small-caliber tissue-engineered blood vessels with complex geometry. Scientific reports. 2023 Feb 21;13(1):3001

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 36810756

View Full Text