Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Nephronophthisis (NPHP) is the most prevalent monogenic disease leading to end-stage renal failure in childhood. RhoA activation is involved in NPHP pathogenesis. This study explored the role of the RhoA activator guanine nucleotide exchange factor (GEF)-H1 in NPHP pathogenesis. We analyzed the expression and distribution of GEF-H1 in NPHP1 knockout (NPHP1KO) mice using Western blotting and immunofluorescence, followed by GEF-H1 knockdown. Immunofluorescence and renal histology were used to examine the cysts, inflammation, and fibrosis. A RhoA GTPase activation assay and Western blotting were used to detect the expression of downstream GTP-RhoA and p-MLC2, respectively. In NPHP1 knockdown (NPHP1KD) human kidney proximal tubular cells (HK2 cells), we detected the expressions of E-cadherin and α-smooth muscle actin (α-SMA). In vivo, increased expression and redistribution of GEF-H1, and higher levels of GTP-RhoA and p-MLC2 in renal tissue of NPHP1KO mice were observed, together with renal cysts, fibrosis, and inflammation. These changes were alleviated by GEF-H1 knockdown. In vitro, the expression of GEF-H1 and activation of RhoA were also increased, with increased expression of α-SMA and decreased E-cadherin. GEF-H1 knockdown reversed these changes in NPHP1KD HK2 cells. Thus, the GEF-H1/RhoA/MLC2 axis is activated in NPHP1 defects and may play a pivotal role in NPHP pathogenesis.

Citation

Qiulei Hu, Jiayong Lai, Huamu Chen, Yong Cai, Zhihui Yue, Hongrong Lin, Liangzhong Sun. Reducing GEF-H1 Expression Inhibits Renal Cyst Formation, Inflammation, and Fibrosis via RhoA Signaling in Nephronophthisis. International journal of molecular sciences. 2023 Feb 09;24(4)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36834937

View Full Text