Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

8-Hydroxygeraniol, an important component of insect sex pheromones and defensive secretions, can be used as a potential biological insect repellent in agriculture. Microbial production provides sustainable and green means to efficiently gain 8-hydroxygeraniol. The conversion of geraniol to 8-hydroxygeraniol by P450 geraniol-8-hydroxylase (G8H) was regarded as the bottleneck for 8-hydroxygeraniol production. Herein, an integrated strategy consisting of the fitness between G8H and cytochrome P450 reductase (CPR), endoplasmic reticulum (ER) engineering, and reduced nicotinamide adenine dinucleotide phosphate (NADPH) supply is implemented to enhance the production of 8-hydroxygeraniol in Saccharomyces cerevisiae. The titer of 8-hydroxygeraniol was gradually increased by 2.1-fold (up to 158.1 mg/L). Moreover, dehydrogenase ADH6 and reductase ARI1 responsible for the reduction of 8-hydroxygeraniol toward shunt products were also deleted, elevating 8-hydroxygeraniol production to 238.9 mg/L at the shake flask level. Consequently, more than 1.0 g/L 8-hydroxygeraniol in S. cerevisiae was achieved in 5.0 L fed-batch fermentation by a carbon restriction strategy, which was the highest-reported titer in microbes so far. Our work not only provides a sustainable way for de novo biosynthesis of 8-hydroxygeraniol but also sets a good reference in P450 engineering in microbes.

Citation

Herong Wang, Guozhen Jiang, Nan Liang, Tianyu Dong, Mengying Shan, Mingdong Yao, Ying Wang, Wenhai Xiao, Yingjin Yuan. Systematic Engineering to Enhance 8-Hydroxygeraniol Production in Yeast. Journal of agricultural and food chemistry. 2023 Mar 15;71(10):4319-4327

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 36857414

View Full Text