Correlation Engine 2.0
Clear Search sequence regions

  • austria (1)
  • blue (1)
  • dna primers (2)
  • electrodes (1)
  • genes p53 (1)
  • humans (1)
  • low (1)
  • p53 gene (3)
  • serum (1)
  • signal (5)
  • Sizes of these terms reflect their relevance to your search.

    An improved electrochemical sensor has been developed for sensitive detection of the p53 gene based on exponential amplification reaction (EXPAR) and CRISPR/Cas12a. Restriction endonuclease BstNI is introduced to specifically identify and cleave the p53 gene, generating primers to trigger the EXPAR cascade amplification. A large number of amplified products are then obtained to enable the lateral cleavage activity of CRISPR/Cas12a. For electrochemical detection, the amplified product activates Cas12a to digest the designed block probe, which allows the signal probe to be captured by the reduced graphene oxide-modified electrode (GCE/RGO), resulting in an enhanced electrochemical signal. Notably, the signal probe is labeled with large amounts of methylene blue (MB). Compared with traditional endpoint decoration, the special signal probe effectively amplifies the electrochemical signals by a factor of about 15. Experimental results show that the electrochemical sensor exhibits wide ranges from 500 aM to 10 pM and 10 pM to 1 nM, as well as a relatively low limit detection of 0.39 fM, which is about an order of magnitude lower than that of fluorescence detection. Moreover, the proposed sensor shows reliable application capability in real human serum, indicating that this work has great prospects for the construction of a CRISPR-based ultra-sensitive detection platform. © 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.


    Shiying Zhou, Liyuan Deng, Jiangbo Dong, Peng Lu, Na Qi, Zhen Huang, Mei Yang, Danqun Huo, Changjun Hou. Electrochemical detection of the p53 gene using exponential amplification reaction (EXPAR) and CRISPR/Cas12a reactions. Mikrochimica acta. 2023 Mar 04;190(4):113

    Expand section icon Mesh Tags

    Expand section icon Substances

    PMID: 36869936

    View Full Text