Correlation Engine 2.0
Clear Search sequence regions


  • ATP (5)
  • element (1)
  • hydrolysis (1)
  • Mot1 (4)
  • protein dna complexes (2)
  • protein- complexes (1)
  • rna (1)
  • Snf2 (3)
  • Swi2 (3)
  • TATA (2)
  • tata box (3)
  • TBP (9)
  • Sizes of these terms reflect their relevance to your search.

    The Swi2/Snf2 family transcription regulator Modifier of Transcription 1 (Mot1) uses adenosine triphosphate (ATP) to dissociate and reallocate the TATA box-binding protein (TBP) from and between promoters. To reveal how Mot1 removes TBP from TATA box DNA, we determined cryogenic electron microscopy structures that capture different states of the remodeling reaction. The resulting molecular video reveals how Mot1 dissociates TBP in a process that, intriguingly, does not require DNA groove tracking. Instead, the motor grips DNA in the presence of ATP and swings back after ATP hydrolysis, moving TBP to a thermodynamically less stable position on DNA. Dislodged TBP is trapped by a chaperone element that blocks TBP's DNA binding site. Our results show how Swi2/Snf2 proteins can remodel protein-DNA complexes through DNA bending without processive DNA tracking and reveal mechanistic similarities to RNA gripping DEAD box helicases and RIG-I-like immune sensors. © 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.

    Citation

    Stephan Woike, Sebastian Eustermann, James Jung, Simon Josef Wenzl, Götz Hagemann, Joseph Bartho, Katja Lammens, Agata Butryn, Franz Herzog, Karl-Peter Hopfner. Structural basis for TBP displacement from TATA box DNA by the Swi2/Snf2 ATPase Mot1. Nature structural & molecular biology. 2023 May;30(5):640-649

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 37106137

    View Full Text