Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

During immune responses, B cells engaging a cognate antigen are recruited to GCs in secondary lymphoid organs where they will diversify their BCR to generate highly specific and adapted humoral responses. They do so, by inducing the expression of activation-induced cytidine deaminase (AID), which initiates somatic hypermutation (SHM) and class switch recombination (CSR). AID deaminates cytosines in ss DNA, generating U:G mismatches that are processed to induce ds DNA break intermediates during CSR that result in the expression of a different antibody isotype. Interestingly, hypoxia regions have been reported in GCs and suggesting that hypoxia could modulate the humoral response. Furthermore, hypoxia inducible transcription factor (HIF) can bind to the AID promoter and induce AID expression in a non-B-cell setting, suggesting that it might be involved in the transcriptional induction of AID in B cells, hence, regulating SHM and CSR. We, thus, hypothesized that HIF could regulate the efficiency of CSR. Here, we show that the inactivation of both the HIF-1α and HIF-1β subunits of the HIF transcription factor in murine CH12 B cells results in defective CSR and that this is due to the suboptimal induction of AID expression. © 2023 The Authors. European Journal of Immunology published by Wiley-VCH GmbH.

Citation

Vincent Heyer, Bernardo Reina-San-Martin. Optimal AID expression and efficient immunoglobulin class switch recombination are dependent on the hypoxia-inducible factor. European journal of immunology. 2023 Jul;53(7):e2350373

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 37143384

View Full Text