Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The apoplast of plant leaves, the intercellular space between mesophyll cells, is normally largely filled with air with a minimal amount of liquid water in it, which is essential for key physiological processes such as gas exchange to occur. Phytopathogens exploit virulence factors to induce a water-rich environment, or "water-soaked" area, in the apoplast of the infected leaf tissue to promote disease. We propose that plants evolved a "water soaking" pathway, which normally keeps a nonflooded leaf apoplast for plant growth but is disturbed by microbial pathogens to facilitate infection. Investigation of the "water soaking" pathway and leaf water control mechanisms is a fundamental, yet previously overlooked, aspect of plant physiology. To identify key components in the "water soaking" pathway, we performed a genetic screen to isolate Arabidopsis (Arabidopsis thaliana) severe water soaking (sws) mutants that show liquid water overaccumulation in the leaf under high air humidity, a condition required for visible water soaking. Here, we report the sws1 mutant, which displays rapid water soaking upon high humidity treatment due to a loss-of-function mutation in CURLY LEAF (CLF), encoding a histone methyltransferase in the POLYCOMB REPRESSIVE COMPLEX 2 (PRC2). We found that the sws1 (clf) mutant exhibits enhanced abscisic acid (ABA) levels and stomatal closure, which are indispensable for its water soaking phenotype and mediated by CLF's epigenetic regulation of a group of ABA-associated NAM, ATAF, and CUC (NAC) transcription factor genes, NAC019/055/072. The clf mutant showed weakened immunity, which likely also contributes to the water soaking phenotype. In addition, the clf plant supports a substantially higher level of Pseudomonas syringae pathogen-induced water soaking and bacterial multiplication, in an ABA pathway and NAC019/055/072-dependent manner. Collectively, our study sheds light on an important question in plant biology and demonstrates CLF as a key modulator of leaf liquid water status via epigenetic regulation of the ABA pathway and stomatal movement. © American Society of Plant Biologists 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Citation

Jingni Wu, Xiao Mei, Jinyu Zhang, Luhuan Ye, Yezhou Hu, Tao Chen, Yiping Wang, Menghui Liu, Yijing Zhang, Xiu-Fang Xin. CURLY LEAF modulates apoplast liquid water status in Arabidopsis leaves. Plant physiology. 2023 Aug 31;193(1):792-808

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 37300539

View Full Text