Correlation Engine 2.0
Clear Search sequence regions


  • behavior (1)
  • embelin (8)
  • female (1)
  • gallic acid (3)
  • glycolysis (5)
  • homeostasis (1)
  • humans (1)
  • lactic acid (2)
  • mrna (2)
  • protein levels (1)
  • redox (4)
  • SLC16A1 (13)
  • SLC16A3 (1)
  • Sizes of these terms reflect their relevance to your search.

    SLC16A1 and SLC16A3 (SLC16A1/3) are highly expressed in cervical cancers and associated with the malignant biological behavior of cancer. SLC16A1/3 is the critical hub for regulating the internal and external environment, glycolysis, and redox homeostasis in cervical cancer cells. Inhibiting SLC16A1/3 provides a new thought to eliminate cervical cancer effectively. There are few reports on effective treatment strategies to eliminate cervical cancer by simultaneously targeting SLC16A1/3. GEO database analysis and quantitative reverse transcription polymerase chain reaction experiment were used to confirm the high expression of SLC16A1/3. The potential inhibitor of SLC16A1/3 was screened from Siwu Decoction by using network pharmacology and molecular docking technology. The mRNA levels and protein levels of SLC16A1/3 in SiHa and HeLa cells treated by Embelin (EMB) were clarified, respectively. Furthermore, the Gallic acid-iron (GA-Fe) drug delivery system was used to improve its anti-cancer performance. Compared with normal cervical cells, SLC16A1/3 mRNA was over-expressed in SiHa and HeLa cells. Through the analysis of Siwu Decoction, a simultaneously targeted SLC16A1/3 inhibitor EMB was discovered. It was found for the first time that EMB promoted lactic acid accumulation and further induced redox dyshomeostasis and glycolysis disorder by simultaneously inhibiting SLC16A1/3. The gallic acid-iron-Embelin (GA-Fe@EMB) drug delivery system delivered EMB, which had a synergistic anti-cervical cancer effect. Under the irradiation of a near-infrared laser, the GA-Fe@EMB could elevate the temperature of the tumor area effectively. Subsequently, EMB was released and mediated the lactic acid accumulation and the GA-Fe nanoparticle synergistic Fenton reaction to promote ROS accumulation, thereby increasing the lethality of the nanoparticles on cervical cancer cells. GA-Fe@EMB can target cervical cancer marker SLC16A1/3 to regulate glycolysis and redox pathways, synergistically with photothermal therapy, which provides a new avenue for the synergistic treatment of malignant cervical cancer.

    Citation

    Shiwan You, Jing Zhang, Lan Yu, Zuoping Li, Jiaru Zhang, Na Zhao, Zhenzhen Xie, Youping Li, Zubair Akram, Shiguo Sun. Construction of SLC16A1/3 Targeted Gallic Acid-Iron-Embelin Nanoparticles for Regulating Glycolysis and Redox Pathways in Cervical Cancer. Molecular pharmaceutics. 2023 Sep 04;20(9):4574-4586

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 37307591

    View Full Text