Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Hepatocellular carcinoma (HCC) is the most common type of primary hepatic carcinoma, which is a growing public health problem worldwide. One of the main genetic alterations in HCC is the deregulated Wnt/β-catenin signaling, activation of β-catenin is associated with the progression of HCC. In the present study, we aimed to identify novel modulators in controlling β-catenin ubiquitination and stability. USP8 was overexpressed in HCC tissues and correlated with β-catenin protein level. High expression of USP8 indicated poor prognosis of HCC patients. USP8 depletion significantly decreased β-catenin protein level, β-catenin target genes expression and TOP-luciferase activity in HCC cells. Further mechanistic study revealed that the USP domain of USP8 interacted with the ARM domain of β-catenin. USP8 stabilized β-catenin protein via inhibiting K48-specific poly-ubiquitination process on β-catenin protein. In addition, USP8 depletion inhibited the proliferation, invasion and stemness of HCC cells and conferred ferroptosis resistance, which effects could be further rescued by β-catenin overexpression. In addition, the USP8 inhibitor DUB-IN-3 inhibited the aggressive phenotype and promoted ferroptosis of HCC cells through degradation of β-catenin. Thus, our study demonstrated that USP8 activated the Wnt/beta-catenin signaling through a post-translational mechanism of β-catenin. High expression of USP8 promoted the progression and inhibited ferroptosis of HCC. Targeting the USP8 may serve as a promising strategy for patients with HCC. © 2023. The Author(s).

Citation

Jianing Tang, Guo Long, Liang Xiao, Ledu Zhou. USP8 positively regulates hepatocellular carcinoma tumorigenesis and confers ferroptosis resistance through β-catenin stabilization. Cell death & disease. 2023 Jun 13;14(6):360

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 37311739

View Full Text