Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The specialized sigma factor RpoS mediates a general stress response in Escherichia coli and related bacteria, activating promoters that allow cells to survive stationary phase and many stresses. RpoS synthesis and stability are regulated at multiple levels. Translation of RpoS is positively regulated by multiple small RNAs in response to stress. Degradation of RpoS, dependent upon the adaptor protein RssB, is rapid during exponential growth and ceases upon starvation or other stresses, increasing accumulation of RpoS. E. coli carrying mutations that block the synthesis of polyamines were previously found to have low levels of RpoS, while levels increased rapidly when polyamines were added. We have used a series of reporters to examine the basis for the lack of RpoS in polyamine-deficient cells. The polyamine requirement was independent of small RNA-mediated positive regulation of RpoS translation. Mutations in rssB stabilize RpoS and significantly bypassed the polyamine deficit, suggesting that lack of polyamines might lead to rapid RpoS degradation. However, rates of degradation of mature RpoS were unaffected by polyamine availability. Codon optimization in rpoS partially relieved the polyamine dependence, suggesting a defect in RpoS translation in the absence of polyamines. Consistent with this, a hyperproofreading allele of ribosomal protein S12, encoded by rpsL, showed a decrease in RpoS levels, and this decrease was also suppressed by either codon optimization or blocking RpoS degradation. We suggest that rpoS codon usage leads it to be particularly sensitive to slowed translation, due to either lack of polyamines or hyperproofreading, leading to cotranslational degradation. We dedicate this study to Herb Tabor and his foundational work on polyamines, including the basis for this study. Published by Elsevier Inc.

Citation

Nadim Majdalani, Manas Chattopadhyay, Christopher Keller, Susan Gottesman. Lack of polyamines leads to cotranslational degradation of the general stress factor RpoS in Escherichia coli. The Journal of biological chemistry. 2023 Aug;299(8):104943

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 37343699

View Full Text