Correlation Engine 2.0
Clear Search sequence regions

  • dental materials (2)
  • dentin (3)
  • electron (1)
  • layer (6)
  • phase (7)
  • tp 3 (1)
  • yttria (11)
  • yttrium (2)
  • zirconia (20)
  • zirconium (3)
  • Sizes of these terms reflect their relevance to your search.

    The optical properties of recently developed multilayer zirconia have mainly been studied for the effects of conventional sintering and speed sintering but not as much for the effect of superspeed sintering. As superspeed sintering protocols typically require a higher sintering temperature and higher heating and cooling rates than speed- and conventional sintering protocols, the optical properties of superspeed sintered zirconia may be affected differently. The purpose of this in vitro study was to investigate the effect of superspeed sintering on the optical properties, microstructure, and phase fraction of multilayered 4 mol% yttria-stabilized (4Y-) and 6 mol% yttria-stabilized (6Y-) zirconia. Multilayered 4Y- and 6Y-zirconia were sectioned. After conventional and superspeed sintering, the translucency parameter (TP), and opalescence parameter (OP) were measured with a spectrophotometer (n=10). To obtain the grain sizes from the field emission scanning electron microscopy (FE-SEM) images for each layer (n=2), more than 500 (6Y-zirconia) and 800 grains (4Y-zirconia) were measured by linear intercept methods. The phase fractions were obtained through X-ray diffraction (XRD) analysis by using the Rietveld method (n=1). The results were analyzed by 3-way ANOVA and post hoc Tukey honest significant difference tests (TP and OP) and by 3-way ANOVA and post hoc Scheffé tests (grain size) (α=.05). No layers exhibited a significant difference in TP after superspeed sintering, except the dentin layer (DL) and transition layer 2 (T2) of 4Y- and 6Y-zirconia, respectively. The TP increased (P<.05) in DL for superspeed sintered 4Y-zirconia and decreased (P<.05) in T2 for the superspeed sintered 6Y-zirconia. However, the difference in TP by superspeed sintering was lower than the perceptibility thresholds of 50:50%. The OP decreased (P<.05) in the DL and T2 of 4Y-zirconia after superspeed sintering. For 6Y-zirconia, the OP decreased (P<.05) in all layers except for the transition layer 1 (T1) after superspeed sintering. However, the difference in OP values was minimal, with only a 1.1 difference observed for Zolid Gen-X (4Y) and a range of 1.22 to 1.62 for Katana UTML (6Y) when using superspeed sintering. No significant change was found in the grain size after superspeed sintering of either zirconia. Regardless of the sintering speed, the average grain size of the 6Y-zirconia (conventional: 2.09 to 2.21 μm; superspeed: 2.11 to 2.20 μm) was larger than that of the 4Y-zirconia (conventional: 0.50 to 0.52 μm; superspeed: 0.52 to 0.54 μm). Owing to superspeed sintering, the metastable tetragonal (T') phase content increased while the tetragonal (T) phase decreased in 4Y-zirconia; in 6Y-zirconia, the cubic (C) phase content increased, while the T'-phase content decreased. Superspeed sintering did not result in any clinically significant changes in the translucency and opalescence of 4Y- or 6Y-zirconia. Copyright © 2023 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.


    Hye-Jeong Shin, Yong-Hoon Kwon, Hyo-Joung Seol. Effect of superspeed sintering on translucency, opalescence, microstructure, and phase fraction of multilayered 4 mol% yttria-stabilized tetragonal zirconia polycrystal and 6 mol% yttria-stabilized partially stabilized zirconia ceramics. The Journal of prosthetic dentistry. 2023 Aug;130(2):254.e1-254.e10

    Expand section icon Mesh Tags

    Expand section icon Substances

    PMID: 37357086

    View Full Text