Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Sialyl Lewis X (sLex ) antigen is a fucosylated cell-surface glycan that is normally involved in cell-cell interactions. The enhanced expression of sLex on cell surface glycans, which is attributed to the upregulation of fucosyltransferase 6 (FUT6), has been implicated in facilitating metastasis in human colorectal, lung, prostate, and oral cancers. The role that the upregulated FUT6 plays in the progression of tumor to malignancy, with reduced survival rates, makes it a potential target for anticancer drugs. Unfortunately, the lack of experimental structures for FUT6 has hampered the design and development of its inhibitors. In this study, we used in silico techniques to identify potential FUT6 inhibitors. We first modeled the three-dimensional structure of human FUT6 using AlphaFold. Then, we screened the natural compound libraries from the COCONUT database to sort out potential natural products (NPs) with best affinity toward the FUT6 model. As a result of these simulations, we identified three NPs for which we predicted binding affinities and interaction patterns quite similar to those we calculated for two experimentally tested FUT6 inhibitors, that is, fucose mimetic-1 and a GDP-triazole derived compound. We also performed molecular dynamics (MD) simulations for the FUT6 complexes with identified NPs, to investigate their stability. Analysis of the MD simulations showed that the identified NPs establish stable contacts with FUT6 under dynamics conditions. On these grounds, the three screened compounds appear as promising natural alternatives to experimentally tested FUT6 synthetic inhibitors, with expected comparable binding affinity. This envisages good prospects for future experimental validation toward FUT6 inhibition. © 2023 Wiley Periodicals LLC.

Citation

Jorge Samuel Leon Magdaleno, Ravneet K Grewal, José L Medina-Franco, Romina Oliva, Abdul Rajjak Shaikh, Luigi Cavallo, Mohit Chawla. Toward α-1,3/4 fucosyltransferases targeted drug discovery: In silico uncovering of promising natural inhibitors of fucosyltransferase 6. Journal of cellular biochemistry. 2023 Aug;124(8):1173-1185

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 37357420

View Full Text