The past years of COVID-19 have attracted researchers to carry out benchmark work in face mask detection. However, the existing work does not focus on the problem of reconstructing the face area behind the mask and completing the face that can be used for face recognition. In order to address this problem, in this work we have proposed a spatial attention module-based conditional generative adversarial network method that can generate plausible images of faces without masks by removing the face masks from the face region. The method proposed in this work utilizes a self-created dataset consisting of faces with three types of face masks for training and testing purposes. With the proposed method, an SSIM value of 0.91231 which is 3.89% higher and a PSNR value of 30.9879 which is 3.17% higher has been obtained as compared to the vanilla C-GAN method. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Akhil Kumar, Manisha Kaushal, Akashdeep Sharma. SAM C-GAN: a method for removal of face masks from masked faces. Signal, image and video processing. 2023 May 26:1-9
PMID: 37362232
View Full Text