Correlation Engine 2.0
Clear Search sequence regions


  • calcium (3)
  • copper (1)
  • dna damage (1)
  • e coli (1)
  • escherichia coli (1)
  • His6 (1)
  • homeostasis (1)
  • human (4)
  • intracellular proteins (1)
  • metals (3)
  • MT3 (19)
  • oxygen (1)
  • plasmids (1)
  • resin (1)
  • ubiquitin (2)
  • zinc (1)
  • Sizes of these terms reflect their relevance to your search.

    Mammalian metallothioneins (MTs) are small (6-7 kDa), intracellular, cysteine-rich, metal-binding proteins involved, inter alia, in the homeostasis of zinc and copper, detoxification of heavy metals, antioxidation against reactive oxygen species, and protection against DNA damage. The high cysteine content (~ 30%) in MTs makes them toxic to bacterial cells during protein production, resulting in low yield. To address this issue, we present for the first time a combinatorial approach using the small ubiquitin-like modifier (SUMO) and/or sortase as fusion tags for high-level expression of human MT3 in E. coli and its purification by three different strategies. Three different plasmids were generated using SUMO, sortase A pentamutant (eSrtA), and sortase recognition motif (LPETG) as removable fusion tags for high-level expression and purification of human MT3 from the bacterial system. In the first strategy, SUMOylated MT3 was expressed and purified using Ulp1-mediated cleavage. In the second strategy, SUMOylated MT3 with a sortase recognition motif at the N-terminus of MT3 was expressed and purified using sortase-mediated cleavage. In the final strategy, the fusion protein His6-SUMO-eSrtA-LPETG-MT3 was expressed and purified by one-step sortase-mediated inducible on-bead autocleavage. Using these three strategies the apo-MT3 was purified in a yield of 11.5, 11, and 10.8 mg/L, respectively, which is the highest yield achieved for MT expression and purification to date. No effect of MT3 on Ni2+-containing resin was observed. The SUMO/sortase-based strategy used as the production system for MT3 resulted in a very high expression level and protein production yield. The apo-MT3 purified by this strategy contained an additional glycine residue and had similar metal binding properties as WT-MT3. This SUMO-sortase fusion system is a simple, robust, and inexpensive one-step purification approach for various MTs as well as other toxic proteins with very high yield via immobilized metal affinity chromatography (IMAC). © 2023. The Author(s).

    Citation

    Avinash Kumar Singh, Artur Krężel. Calcium-assisted sortase A cleavage of SUMOylated metallothionein constructs leads to high-yield production of human MT3. Microbial cell factories. 2023 Jul 11;22(1):125

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 37434134

    View Full Text