Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The instability and volatility of iodine is high, however, effective iodine biocidal species can be readily stored in iodinated azoles and then be released upon decomposition or detonation. Iodine azoles with high iodine content and high thermal stability are highly desired. In this work, the strategy of methylene bridging with asymmetric structures of 3,4,5-triiodo-1-H-pyrazole (TIP), 2,4,5-triiodo-1H-imidazol (TIM), and tetraiodo-1H-pyrrole (TIPL) are proposed. Two highly stable fully iodinated methylene-bridged azole compounds 3,4,5-triiodo-1-((2,4,5-triiodo-1H-imidazol-1-yl)methyl)-1H-pyrazole (3) and 3,4,5-triiodo-1-((tetraiodo-1H-pyrrol-1-yl)methyl)-1H-pyrazole (4) were obtained with high iodine content and excellent thermal stability (iodine content: 84.27% for compound 3 and 86.48% for compound 4; Td: 3: 285 °C, 4: 260 °C). Furthermore, their composites with high-energy oxidant ammonium perchlorate (AP) were designed. The combustion behavior and thermal decomposition properties of the formulations were tested and evaluated. This work may open a new avenue to develop advanced energetic biocidal materials with well-balanced energetic and biocidal properties and versatile functionality.

Citation

Xinyuan Zhao, Xun Zhang, Yan Liu, Siping Pang, Chunlin He. Asymmetrical Methylene-Bridge Linked Fully Iodinated Azoles as Energetic Biocidal Materials with Improved Thermal Stability. International journal of molecular sciences. 2023 Jun 27;24(13)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 37445889

View Full Text