Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Sialylation is a terminal glycosylated modification of glycoproteins that regulates critical biological events such as cell adhesion and immune response. Our previous study showed that integrin α3β1 plays a crucial role in regulating the sialylation of N-glycans. However, the underlying mechanism for the regulation remains unclear. This study investigated how sialylation is affected by focal adhesion kinase (FAK), which is a critical downstream signal molecule of integrin β1. We established a stable FAK knockout (KO) cell line using the CRISPR/Cas9 system in HeLa cells. The results obtained from lectin blot, flow cytometric analysis, and MS showed that the sialylation levels were significantly decreased in the KO cells compared with that in wild-type (WT) cells. Moreover, phosphatidylinositol 4-phosphate (PI4P) expression levels were also reduced in the KO cells due to a decrease in the stability of phosphatidylinositol 4-kinase-IIα (PI4KIIα). Notably, the decreased levels of sialylation, PI4P, and the complex formation between GOLPH3 and ST3GAL4 or ST6GAL1, which are the main sialyltransferases for modification of N-glycans, were significantly restored by the re-expression of FAK. Furthermore, the decreased sialylation and phosphorylation of Akt and cell migration caused by FAK deficiency all were restored by overexpressing PI4KIIα, which suggests that PI4KIIα is one of the downstream molecules of FAK. These findings indicate that FAK regulates sialylation via the PI4P synthesis pathway and a novel mechanism is suggested for the integrin-FAK-PI4KIIα-GOLPH3-ST axis modulation of sialylation in N-glycans. Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

Citation

Yuhan Sun, Tomoya Isaji, Yoshiyuki Oyama, Xing Xu, Jianwei Liu, Hisatoshi Hanamatsu, Ikuko Yokota, Nobuaki Miura, Jun-Ichi Furukawa, Tomohiko Fukuda, Jianguo Gu. Focal-adhesion kinase regulates the sialylation of N-glycans via the PI4KIIα-PI4P pathway. The Journal of biological chemistry. 2023 Aug;299(8):105051

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 37451482

View Full Text