Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Oral ingestion is considered an important route of human exposure to perfluorooctanoic acid (PFOA) and its alternative hexafluoropropylene oxide trimer acid (HFPO-TA). Bioactive compounds are widely used as dietary supplements and food additives. However, little is known about the influence of dietary bioactive compounds on the bioavailability of PFOA and HFPO-TA. Here, three dietary bioactive compounds, β-carotene, quercetin and curcumin, were selected to study their influence on the relative bioavailability (RBA) of PFOA and HFPO-TA in soil using a mouse model. Compared to the control group (68.7 ± 6.27 %), quercetin and curcumin at medium and high doses (20 and 100 mg/kg/d) significantly (p < 0.05) decreased PFOA RBA to 55.2 ± 4.85-56.4 ± 4.57 % and 48.3 ± 5.49-48.6 ± 5.44 %, respectively. Mechanism study showed that medium- and high-dose quercetin as well as high-dose curcumin increased urinary excretion of PFOA by 33.6-35.6 % and 32.2 % through upregulating renal expression of multidrug resistance protein 2 (Mrp2) (1.52-1.63 folds) and Mrp4 (1.26-1.53 folds), thereby reducing PFOA accumulation. In PFOA-treated groups, quercetin at medium and high doses dramatically downregulated the hepatic expression of organic anion transport polypeptides (Oatp1a6, Oatp1b2), organic anion transport proteins (Oat1, Oat2), and fatty acid binding proteins (FABP4, FABP12), while curcumin at medium and high doses inhibited the hepatic expression of Oatp1a6, Oat1 and Oat2. These downregulated genes may reduce the transport of PFOA from blood to liver, and in turn decrease the PFOA RBA. However, β-carotene, quercetin and curcumin exhibited no significant effect on RBA and excretion of HFPO-TA (p > 0.05). This indicated the different absorption mechanisms between PFOA and HFPO-TA, and further research is warranted. This study provided a novel perspective for establishing environmentally friendly ways to reduce health hazards from per- and polyfluoroalkyl substances (PFASs). Copyright © 2023 Elsevier B.V. All rights reserved.

Citation

Yi Chen, Hao Wu, Xinyi Cui. Influence of dietary bioactive compounds on the bioavailability and excretion of PFOA and its alternative HFPO-TA: Mechanism exploration. The Science of the total environment. 2023 Nov 15;899:165560

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 37454837

View Full Text