Zhongxian Tian, Xiaohui Hua, Junlan Zhu, Peiwei Li, Ruifan Chen, Xin Li, Tengda Li, Chengfan Zhou, Chuanshu Huang
Ecotoxicology and environmental safety 2023 Sep 15Lung cancer primarily arises from exposure to various environmental factors, particularly airborne pollutants. Among the various lung carcinogens, benzo(a)pyrene and its metabolite B[a]PDE are the strongest ones that actively contribute to lung cancer development. ATG7 is an E1-like activating enzyme and contributes to activating autophagic responses in mammal cells. However, the potential alterations of ATG7 and its role in B[a]PDE-caused lung carcinogenesis remain unknown. Here, we found that B[a]PDE exposure promoted ATG7 expression in mouse lung tissues, while B[a]PDE exposure resulted in ATG7 induction in human normal bronchial epithelial cells. Our studies also demonstrated a significant correlation between high ATG7 expression levels and poor overall survival in lung cancer patients. ATG7 knockdown significantly repressed Beas-2B cell transformation upon B[a]PDE exposure, and such promotive effect of ATG7 on cell transformation mediated the p27 translation inhibition. Further studies revealed that miR-373 inhibition was required to stabilize ATG7 mRNA, therefore increasing ATG7 expression following B[a]PDE exposure, while ATG7 induction led to the autophagic degradation of the DNA methyltransferase 3 Beta (DNMT3B) protein, in turn promoted miR-494 transcription via its promoter region methylation status suppression. We also found that the miR-494 upregulation inhibited p27 protein translation and promoted bronchial epithelial cell transformation via its directly targeting p27 mRNA 3'-UTR region. Current studies, to the best of our knowledge, are for the first time to identify that ATG7 induction and its mediated autophagy is critical for B[a]PDE-induced transformation of human normal epithelial cells. Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
Zhongxian Tian, Xiaohui Hua, Junlan Zhu, Peiwei Li, Ruifan Chen, Xin Li, Tengda Li, Chengfan Zhou, Chuanshu Huang. ATG7 upregulation contributes to malignant transformation of human bronchial epithelial cells by B[a]PDE via DNMT3B protein degradation and miR-494 promoter methylation. Ecotoxicology and environmental safety. 2023 Sep 15;263:115273
PMID: 37480691
View Full Text