Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

During development, progenitors simultaneously activate one lineage while silencing another, a feature highly regulated in adult stem cells but derailed in cancers. Equipped to bind cognate motifs in closed chromatin, pioneer factors operate at these crossroads, but how they perform fate switching remains elusive. Here we tackle this question with SOX9, a master regulator that diverts embryonic epidermal stem cells (EpdSCs) into becoming hair follicle stem cells. By engineering mice to re-activate SOX9 in adult EpdSCs, we trigger fate switching. Combining epigenetic, proteomic and functional analyses, we interrogate the ensuing chromatin and transcriptional dynamics, slowed temporally by the mature EpdSC niche microenvironment. We show that as SOX9 binds and opens key hair follicle enhancers de novo in EpdSCs, it simultaneously recruits co-factors away from epidermal enhancers, which are silenced. Unhinged from its normal regulation, sustained SOX9 subsequently activates oncogenic transcriptional regulators that chart the path to cancers typified by constitutive SOX9 expression. © 2023. The Author(s).

Citation

Yihao Yang, Nicholas Gomez, Nicole Infarinato, Rene C Adam, Megan Sribour, Inwha Baek, Mélanie Laurin, Elaine Fuchs. The pioneer factor SOX9 competes for epigenetic factors to switch stem cell fates. Nature cell biology. 2023 Aug;25(8):1185-1195

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 37488435

View Full Text