Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The abnormal aggregation of β-amyloid protein (Aβ) is a major contributor to Alzheimer's disease (AD). Cu2+ homeostasis imbalance can lead to the aggregation of Aβ, resulting in cytotoxic oligomers and fibrous aggregates, causing neuroinflammation and nerve cell damage, ultimately leading to AD. In this study, we synthesized nitrogen-doped carbon quantum dot (CQD), and designed a macrophage membrane (RAW-M) encapsulated CQD nanosystem for the first time. The abundant nitrogen-containing groups on the surface of CQD effectively capture excess Cu2+ and inhibit rapid Aβ aggregation. Additionally, the good photothermal properties of CQD dissolve the formed fiber precipitates under near-infrared light (NIR). In vitro and in vivo studies showed that the nanosystem significantly improved BBB permeability under laser irradiation, enhancing its ability to cross the BBB and overcome traditional anti-AD drug limitations. In vivo investigations conducted on APP/PS1 mice indicate that the nanosystem strongly reduced Aβ deposition, mitigated neuroinflammation, and ameliorates deficits in learning and memory. Overall, our nanocarrier approach adjusts metal ion homeostasis, inhibits abnormal Aβ aggregation, and uses excellent photothermal properties to depolymerize mature Aβ fibrils to protect cells from Aβ neurotoxicity, providing an effective strategy for Aβ-targeted treatment of AD. Copyright © 2023 Elsevier Inc. All rights reserved.

Citation

Pengkun Ye, Lei Li, Xiating Qi, Mingyuan Chi, Jichun Liu, Meng Xie. Macrophage membrane-encapsulated nitrogen-doped carbon quantum dot nanosystem for targeted treatment of Alzheimer's disease: Regulating metal ion homeostasis and photothermal removal of β-amyloid. Journal of colloid and interface science. 2023 Nov 15;650(Pt B):1749-1761

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 37506416

View Full Text