Correlation Engine 2.0
Clear Search sequence regions


  • formic acid (1)
  • iv sites (3)
  • ma 2 (1)
  • oxygen (1)
  • Sizes of these terms reflect their relevance to your search.

    The electrochemical CO2 reduction reaction (eCO2RR) under acidic conditions has become a promising way to achieve high CO2 utilization because of the inhibition of undesirable carbonate formation that typically occurs under neutral and alkaline conditions. Herein, unprecedented and highly active ditin(IV) sites were integrated into the nanopores of a metal-organic framework, namely NU-1000-Sn, by a "ship-in-a-bottle" strategy. NU-1000-Sn delivers nearly 100% formic acid Faradaic efficiency at an industry current density of 260 mA cm-2 with a high single-pass CO2 utilization of 95% in an acidic solution (pH = 1.67). No obvious degradation was observed over 15 hours of continuous operation at the current density of 260 mA cm-2, representing the remarkable eCO2RR performance in acidic electrolyte to date. The mechanism study shows that both oxygen atoms of the key intermediate *HCOO can coordinate to the two adjacent Sn atoms in a ditin(IV) site simultaneously. Such bridging coordination is conducive to the hydrogenation of CO2, thus leading to high performance.

    Citation

    Huan Xue, Zhen-Hua Zhao, Pei-Qin Liao, Xiao-Ming Chen. Ship-in-a-Bottle" Integration of Ditin(IV) Sites into a Metal-Organic Framework for Boosting Electroreduction of CO2 in Acidic Electrolyte. Journal of the American Chemical Society. 2023 Aug 09;145(31):16978-16982


    PMID: 37526259

    View Full Text