Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The editing efficiency primarily hinders the utility of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology in poultry. For a better understanding of the factors that influence the efficiency of gene knockout mediated by CRISPR/Cas9 in chicken DF1 cells, the single or dual single guide RNA (sgRNA) targeted exon regions of genes (taking anti-Müllerian hormone, TGF-beta receptor type-2 and Peroxisome proliferator-activated receptor gamma as examples) were designed. The sgRNA-CRISPR/Cas9 vectors with corresponding reporter vectors were transfected into DF1 cells. T7 endonuclease 1 (T7E1) and amplicon sequencing assay were compared for evaluating genome editing efficiency and the indel profiles were analyzed based on the data of amplicon sequencing. Meanwhile, to evaluate the precision of Cas9 cleavage, we also analyzed the homology of small insertion with the nucleotides of upstream and downstream of cleave sties. The surrogate reporter systems showed strong enrichment function, and the indel percentages were increased after puromycin selection. The indel ratios of T7E1 assay were lower than amplicon sequencing assay, which indicated T7E1 isn't fit to be used as the sole evaluation criterion for the targeting efficiency of CRISPR/Cas9. Based on the amplicon sequencing analysis, the editing efficiency showed noticeable differences among cells treated with different sgRNAs. However, the variety of indel efficiencies was not related to the GC content of sgRNA or chromosome types of targeted genes. The results showed that the dual sgRNA might not raise the indel ratios compared with individual sgRNA, but they could increase the ratios of the fragment deletions. The present study suggested that the surrogate reporter was an effective method to promote the editing efficiencies of CRISPR/Cas9 in chicken cells. The dual sgRNA could increase the fragment deletions, and the sensitivity of amplicon sequencing to detect cleavage was higher than the T7 endonuclease 1 assay. These results are essential to improve the application of CRISPR/Cas9 technology in chicken cells. Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

Citation

Kexin Zou, Fang Wang, Zechun Zhang, Yang Zhou, Pengcheng Li, Dan Wang, Mengqi Zhu, Cunling Jia, Zehui Wei. Optimized CRISPR/Cas9 system for gene knockout in chicken DF1 cells. Poultry science. 2023 Oct;102(10):102970

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 37562129

View Full Text