Correlation Engine 2.0
Clear Search sequence regions


  • austria (1)
  • biosensors (1)
  • exciton (3)
  • molybdenum (2)
  • profenofos (4)
  • signal (2)
  • Sizes of these terms reflect their relevance to your search.

    A split-type photoelectrochemical (PEC) sensor was designed for the detection of profenofos (PFF) depending on the magnetic-assisted exciton-plasmon interactions (EPI) between the semiconductor substrate and Au NPs. The core-shell Bi2S3 nanorods@MoS2 nanosheets (Bi2S3 NRs@MoS2 NSs) heterostructure nanomaterial with fascinating performance was synthesized and used as the photovoltaic conversion substrate and signal molecules absorption platform. The PEC sensor is operated by co-incubating with the released Au NPs-cDNA from the surface of magnetic beads, originating from the target-triggered DNA double-stranded structure opening event. Due to the strong EPI effects, the photocurrent of Bi2S3 NRs@MoS2 NSs decreased and varied with the PFF concentrations. The proposed PEC sensor exhibited outstanding analytical performances, including a wide linear range (1.0 pg mL-1~1.0 μg mL-1), low detection limitation (0.23 pg mL-1, at 3 σ/m), excellent specificity, high stability, and applicability. Overall, this work provides a new signal strategy for PEC biosensors and extends its application in environmental analysis. © 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.

    Citation

    Ben-Fang Xu, Qianan Li, Ping Qu, Xiao-Ru Xin, Ai-Jun Wang, Li-Ping Mei, Pei Song, Jiu-Ju Feng. Magnetic-assisted exciton-plasmon interactions modulated Bi2S3 nanorods@MoS2 nanosheets heterojunction: towards a split-type photoelectrochemical sensing of profenofos. Mikrochimica acta. 2023 Aug 14;190(9):350

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 37574467

    View Full Text