Alport syndrome (AS; OMIM#308,940) is a hereditary kidney disease that progresses over time and is distinguished by hearing loss and ocular irregularities. The syndrome has three subtypes, namely X-linked (XL; OMIM#301,050), autosomal recessive (AR; OMIM#203,780), and autosomal dominant (AD; OMIM#104,200), which are categorized based on their respective modes of inheritance. XLAS is attributed to a pathogenic variant in the COL4A5 (OMIM*303,630) gene, which encodes the α5(IV) chain of type IV collagen (Col-IV). In contrast, ADAS and ARAS are the result of variants in the COL4A3 (OMIM*120,070) and COL4A4 (OMIM*120,131) genes, which encode the α3(IV) and α4(IV) chains of Col-IV, respectively. Typically, the diagnosis of AS necessitates hereditary or pathological assessments. The determination of splicing variants as pathogenic or non-pathogenic based on gene sequencing outcomes is challenging. In this study, we conducted exome sequencing and Sanger sequencing on two unrelated Chinese patients with AS. We identified a deletion variant c.4414delG in the COL4A5 gene and a splicing variant c.4298-20T > A in the same gene. In order to ascertain the impact of c.4298-20T > A on the synthesis of COL4A5 mRNA, we performed experiments involving minigene splicing. Additionally, we predicted the ability of these two variants to affect triple helix formation of α345(IV) using molecular dynamics methods. The c.4414delG deletion variant caused a change in the genetic code of the COL4A5 gene. Specifically, it caused a shift in codon 1472 from encoding aspartate to encoding methionine. This shift resulted in a change of 75 amino acids in the protein sequence, ultimately leading to an early stop codon. This premature stop codon caused the production of a truncated α5(IV) chain with a predicted protein effect of p.D1472Mfs. The mRNA of the COL4A5 gene experienced intron 46 retention due to the splicing variant c.4298-20T > A, leading to the inclusion of six additional amino acids between amino acids 1432 and 1433 of the α5(IV) chain. This variant is predicted to have a protein effect of p.(P1432_G1433insDYFVEI). The impact of two variants, c.4414delG and c.4298-20T > A, on the aggregation region for α3(IV), α4(IV), and α5(IV) trimerisation were studied using molecular dynamics simulations. Results showed that the deletion variant c.4414delG had a significantly stronger disruption on NC1, compared to the splicing variant c.4298-20T > A. This difference in impact is consistent with the varying clinical phenotypes observed in the two patients. Based on the American College of Medical Genetics and Genomics (ACMG) classification criteria and guidelines for genetic variants, the deletion variant c.4414delG was rated as pathogenic while the splicing variant c.4298-20T > A was rated as likely-pathogenic. Our study has identified two novel pathogenic loci, the deletion variant c.4414delG and the splicing variant c.4298-20T > A, associated with XLAS. This finding expands the genetic spectrum of XLAS. We suggest that molecular dynamics can effectively model the effect of genetic variation on α345(IV) trimerization, which may offer valuable insights into the mechanisms of XLAS pathogenesis. © 2023. BioMed Central Ltd., part of Springer Nature.
Lei Liang, Haotian Wu, Zeyu Cai, Jianrong Zhao. Genetic and molecular dynamics analysis of two variants of the COL4A5 gene causing Alport syndrome. BMC medical genomics. 2023 Aug 18;16(1):192
PMID: 37596645
View Full Text