Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Proteins containing a RNB domain, originally identified in Escherichia coli RNase II, are widely present throughout the tree of life. Many RNB proteins have 3'-5' exoribonucleolytic activity but some have lost catalytic activity during evolution. Database searches identified a new RNB domain-containing protein in human: HELZ2. Analysis of genomic and expression data combined with evolutionary information suggested that the human HELZ2 protein is produced from an unforeseen non-canonical initiation codon in Hominidae. This unusual property was confirmed experimentally, extending the human protein by 247 residues. Human HELZ2 was further shown to be an active ribonuclease despite the substitution of a key residue in its catalytic center. HELZ2 RNase activity is lost in cells from some cancer patients as a result of somatic mutations. HELZ2 harbors also two RNA helicase domains and several zinc fingers and its expression is induced by interferon treatment. We demonstrate that HELZ2 is able to degrade structured RNAs through the coordinated ATP-dependent displacement of duplex RNA mediated by its RNA helicase domains and its 3'-5' ribonucleolytic action. The expression characteristics and biochemical properties of HELZ2 support a role for this factor in response to viruses and/or mobile elements. © The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.

Citation

Eric Huntzinger, Jordan Sinteff, Bastien Morlet, Bertrand Séraphin. HELZ2: a new, interferon-regulated, human 3'-5' exoribonuclease of the RNB family is expressed from a non-canonical initiation codon. Nucleic acids research. 2023 Sep 22;51(17):9279-9293

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 37602378

View Full Text