Correlation Engine 2.0
Clear Search sequence regions


  • algorithms (1)
  • forest (2)
  • learn (6)
  • random (2)
  • Sizes of these terms reflect their relevance to your search.

    Combinatorial pathway optimization is an important tool in metabolic flux optimization. Simultaneous optimization of a large number of pathway genes often leads to combinatorial explosions. Strain optimization is therefore often performed using iterative design-build-test-learn (DBTL) cycles. The aim of these cycles is to develop a product strain iteratively, every time incorporating learning from the previous cycle. Machine learning methods provide a potentially powerful tool to learn from data and propose new designs for the next DBTL cycle. However, due to the lack of a framework for consistently testing the performance of machine learning methods over multiple DBTL cycles, evaluating the effectiveness of these methods remains a challenge. In this work, we propose a mechanistic kinetic model-based framework to test and optimize machine learning for iterative combinatorial pathway optimization. Using this framework, we show that gradient boosting and random forest models outperform the other tested methods in the low-data regime. We demonstrate that these methods are robust for training set biases and experimental noise. Finally, we introduce an algorithm for recommending new designs using machine learning model predictions. We show that when the number of strains to be built is limited, starting with a large initial DBTL cycle is favorable over building the same number of strains for every cycle.

    Citation

    Paul van Lent, Joep Schmitz, Thomas Abeel. Simulated Design-Build-Test-Learn Cycles for Consistent Comparison of Machine Learning Methods in Metabolic Engineering. ACS synthetic biology. 2023 Sep 15;12(9):2588-2599

    Expand section icon Mesh Tags


    PMID: 37616156

    View Full Text