Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

In this study, we developed a highly sensitive and specific bimolecular fluorescence complementation (BiFC)-based influenza A virus (IAV)-sensing system by combining a galactose/glucose-binding protein (GGBP) with an N-terminal large domain (YN1-172) and a C-terminal small domain (YC173-239) made up of enhanced yellow fluorescence protein (eYFP). The GGBP-based BiFC reporter exhibits the fluorescence reconstitution as a result of conformational changes in GGBP when lactose, which was derived from 6'-silalyllactose and used as a substrate for neuraminidase (NA), binds to GGBP in the presence of IAV. The system showed a linear dynamic range extending from 1 × 100 to 1 × 107 TCID50/mL, and it had a detection limit of 1.1 × 100 TCID50/mL for IAV (H1N1), demonstrating ultra-high sensitivity. Our system exhibited fluorescence intensity enhancements in the presence of IAV, while it displayed weak fluorescence signals when exposed to NA-deficient viruses, such as RSV A, RSV B, adenovirus and rhinovirus, thereby indicating selective responses for IAV detection. Overall, our system provides a simple, highly sensitive and specific IAV detection platform based on BiFC that is capable of detecting ligand-induced protein conformational changes, obviating the need for virus culture or RNA extraction processes.


Ui Jin Lee, Yunkwang Oh, Oh Seok Kwon, Yong-Beom Shin, Moonil Kim. Highly Sensitive and Specific Detection of Influenza A Viruses Using Bimolecular Fluorescence Complementation (BiFC) Reporter System. Biosensors. 2023 Aug 02;13(8)

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 37622868

View Full Text