Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

This study aimed to clarify the role of glutamine in atherosclerosis and its participating mechanism. Forty C57BL/6J mice were divided into wild control (wild Con), ApoE- /- control (ApoE- /- Con), glutamine + ApoE- /- control (Glut + ApoE- /- Con), ApoE- /- high fat diet (ApoE- /- HFD), and glutamine + ApoE- /- HFD (Glut + ApoE- /- HFD) groups. The degree of atherosclerosis, western blotting, and multiomics were detected at 18 weeks. An in vitro study was also performed. Glutamine treatment significantly decreased the degree of aortic atherosclerosis (p = 0.03). O-GlcNAcylation (O-GlcNAc), IL-1β, IL-1α, and pyruvate kinase M2 (PKM2) in the ApoE- /- HFD group were significantly higher than those in the ApoE- /- Con group (p < 0.05). These differences were attenuated by glutamine treatment (p < 0.05), and aggravated by O-GlcNA transferase (OGT) overexpression in the in vitro study (p < 0.05). Multiomics showed that the ApoE- /- HFD group had higher levels of oxidative stress regulatory molecules (guanine deaminase [GUAD], xanthine dehydrogenase [XDH]), proinflammatory regulatory molecules (myristic acid and myristoleic acid), and stress granules regulatory molecules (caprin-1 and deoxyribose-phosphate aldolase [DERA]) (p < 0.05). These differences were attenuated by glutamine treatment (p < 0.05). We conclude that glutamine supplementation might alleviate atherosclerosis through downregulation of O-GlcNAc, glycolysis, oxidative stress, and proinflammatory pathway. © 2023 Wiley-VCH GmbH.

Citation

Hao Zhang, Chunxiu Wang, Haichen Sun, Tian Zhou, Chang Ma, Xuexue Han, Tianxing Zhang, Jinggang Xia. Glutamine supplementation alleviated aortic atherosclerosis in mice model and in vitro. Proteomics. 2024 Mar;24(5):e2300179

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 37679095

View Full Text