Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The ability to perceive and respond to light stimuli is fundamental not only for spatial vision but also to many other light-mediated interactions with the environment. In animals, light perception is performed by specific cells known as photoreceptors and, at molecular level, by a group of GPCRs known as opsins. Sea urchin larvae possess a group of photoreceptor cells (PRCs) deploying a Go-Opsin (Opsin3.2) which have been shown to share transcription factors and morphology with PRCs of the ciliary type, raising new questions related to how this sea urchin larva PRC is specified and whether it shares a common ancestor with ciliary PRCs or it if evolved independently through convergent evolution. To answer these questions, we combined immunohistochemistry and fluorescent in situ hybridization to investigate how the Opsin3.2 PRCs develop in the sea urchin Strongylocentrotus purpuratus larva. Subsequently, we applied single-cell transcriptomics to investigate the molecular signature of the Sp-Opsin3.2-expressing cells and show that they deploy an ancient regulatory program responsible for photoreceptors specification. Finally, we also discuss the possible functions of the Opsin3.2-positive cells based on their molecular fingerprint, and we suggest that they are involved in a variety of signaling pathways, including those entailing the thyrotropin-releasing hormone.

Citation

Maria Cocurullo, Periklis Paganos, Rossella Annunziata, Danila Voronov, Maria Ina Arnone. Single-Cell Transcriptomic Analysis Reveals the Molecular Profile of Go-Opsin Photoreceptor Cells in Sea Urchin Larvae. Cells. 2023 Aug 23;12(17)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 37681865

View Full Text