Correlation Engine 2.0
Clear Search sequence regions


  • behaviour (1)
  • gradient (1)
  • penta (16)
  • Sizes of these terms reflect their relevance to your search.

    N-Nitrosamine is one of the highly toxic carcinogenic compounds that are found almost in the entire environment. In the present work, novel penta-silicene (penta-Si) and penta-silicane (penta-HSi) are utilised to sense the N-nitrosamine in the air environment. Initially, structural firmness of penta-Si and penta-HSi is confirmed using cohesive energy. Subsequently, the electronic properties of penta-Si and penta-HSi are discussed with the aid of electronic band structure and projected density of states (PDOS) maps. The calculated band gap of penta-Si and penta-HSi is 0.251 eV and 3.117 eV, correspondingly. Mainly, the adsorption property of N-nitrosamine on the penta-Si and penta-HSi is studied based on adsorption energy, Mulliken population analysis along with relative energy gap changes. The computed adsorption energy range is in physisorption (- 0.101 to - 0.619 eV), which recommends that the proposed penta-Si and penta-HSi can be employed as a promising sensor to detect the N-nitrosamine in the air environment. The structural, electronic and adsorption behaviour of N-nitrosamine on penta-Si and penta-HSi are studied based on the density functional theory (DFT) approach. The hybrid generalized gradient approximation (GGA) with Becke's three-parameter (B3) + Lee-Yang-Parr (LYP) exchange correlation functional is used to optimise the base material. All calculations in the present work are carried out in Quantum-ATK-Atomistic Simulation Software. © 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

    Citation

    V Nagarajan, R Ramesh, R Chandiramouli. N-Nitrosamine sensing properties of novel penta-silicane nanosheets-a first-principles outlook. Journal of molecular modeling. 2023 Sep 09;29(10):309


    PMID: 37688608

    View Full Text