Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The gut barrier plays an essential role in maintaining homeostasis and is usually composed of a mechanical barrier, a chemical barrier, an immune barrier, and a biological barrier. However, the impacts of lead (Pb) exposure on avian gut barrier are still unclear. Therefore, the present study tried to determine the toxic effects of Pb on ileal barrier of a biological model-Japanese quail (Coturnix japonica). One-week old quails were exposed to 0, 50, 500 and 1000 ppm Pb in drinking water for 5 weeks. The results showed mechanic barrier in the ileum was disrupted with microstructural deformation featured by epithelial cell abscission, villi contractions and goblet cells reduction as well as ultrastructural changes characterized by swollen mitochondria, blurry tight junctions and microvilli subtraction. Meanwhile, the expression of genes associated with intestinal tight junctions was downregulated in Pb-treated groups indicating tight junction malfunction. Moreover, less mucus and downregulation of expression of mucin2 (Muc2) and Krüppel-like factor 4 (Klf4) indicated chemical barrier disturbance by Pb. In addition, the alteration of microbial diversity and emergence of pathogen bacteria suggested ileal biological barrier disruption by Pb. Furthermore, Pb caused immune dysfunction in the ileum through promoting the expression of pro-inflammatory factors including interleukin 1 beta (IL-1β), interleukin 6 (IL-6), Interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α) and nuclear factor kappa B (NF-κB) and inhibiting the expression of anti-inflammatory factor interleukin 10 (IL-10). The present study demonstrated that Pb may pose health risks to birds through gut barrier damages. Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

Citation

Ying Zheng, Mingcun Chen, Yuxin Zhang, Gang Wang, Hongfeng Zhao. Lead exposure disrupted ileal barrier of developmental Japanese quails(Coturnix japonica): Histopathological damages, microbiota dysbiosis and immune disorder. Ecotoxicology and environmental safety. 2023 Oct 01;264:115488

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 37717353

View Full Text