Correlation Engine 2.0
Clear Search sequence regions

  • humans (1)
  • investigates (1)
  • patient (5)
  • x rays (6)
  • Sizes of these terms reflect their relevance to your search.

    This study investigates the effects of including patients' clinical information on the performance of deep learning (DL) classifiers for disease location in chest X-ray images. Although current classifiers achieve high performance using chest X-ray images alone, consultations with practicing radiologists indicate that clinical data is highly informative and essential for interpreting medical images and making proper diagnoses. In this work, we propose a novel architecture consisting of two fusion methods that enable the model to simultaneously process patients' clinical data (structured data) and chest X-rays (image data). Since these data modalities are in different dimensional spaces, we propose a spatial arrangement strategy, spatialization, to facilitate the multimodal learning process in a Mask R-CNN model. We performed an extensive experimental evaluation using MIMIC-Eye, a dataset comprising different modalities: MIMIC-CXR (chest X-ray images), MIMIC IV-ED (patients' clinical data), and REFLACX (annotations of disease locations in chest X-rays). Results show that incorporating patients' clinical data in a DL model together with the proposed fusion methods improves the disease localization in chest X-rays by 12% in terms of Average Precision compared to a standard Mask R-CNN using chest X-rays alone. Further ablation studies also emphasize the importance of multimodal DL architectures and the incorporation of patients' clinical data in disease localization. In the interest of fostering scientific reproducibility, the architecture proposed within this investigation has been made publicly accessible( ). © 2023. Springer Nature Limited.


    Chihcheng Hsieh, Isabel Blanco Nobre, Sandra Costa Sousa, Chun Ouyang, Margot Brereton, Jacinto C Nascimento, Joaquim Jorge, Catarina Moreira. MDF-Net for abnormality detection by fusing X-rays with clinical data. Scientific reports. 2023 Sep 23;13(1):15873

    Expand section icon Mesh Tags

    Expand section icon Substances

    PMID: 37741833

    View Full Text