Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Congenital heart disease occurs in approximately 1 in 100 cases. Although sibling occurrence is high (3-9%), the causative genes for this disease are still being elucidated. PLD1 (Phospholipase D1) is a recently discovered gene; however, few case reports have been published on it. In this report, we describe a case of triplicate fetal congenital heart disease that was diagnosed as a PDL1 mutation. Our objective is to explore the clinical manifestations of PLD1 mutations in this particular case. A 32-year-old Japanese woman (gravida, para 0) was introduced since fetus four chamber view was not clear and was diagnosed with ductus arteriosus-dependent left ventricular single ventricle and pulmonary atresia at 21 weeks and 1 day of gestation during her first pregnancy. Artificial abortion using Gemeprost was performed at 21 weeks and 5 days of gestation. The second pregnancy was diagnosed as pulmonary atresia with intact ventricular septum with cardiomegaly, a cardiothoracic area ratio of more than 35%, and a circulatory shunt at 13 weeks and 3 days of gestation. Subsequently, intrauterine fetal death was confirmed at 14 weeks and 3 days of gestation. Regarding the third pregnancy, fetal ultrasonography at 11 weeks and 5 days of gestation showed mild fetal hydrops and moderate tricuspid valve regurgitation. At 16 weeks and 5 days of gestation, the fetus was suspected to have a left ventricular-type single ventricle, trace right ventricle, pulmonary atresia with intact ventricular septum, or cardiomyopathy. Cardiac function gradually declined at 26 weeks of gestation, and intrauterine fetal death was confirmed at 27 weeks and 5 days of gestation. The fourth pregnancy resulted in a normal heart with good progression and no abnormal baby. We submitted the first and second fetuses' umbilical cord, third fetus' placenta, and the fourth fetus' blood to genetic testing using whole exome analysis with next generation sequencing. Genetic analysis identified hemizygous PLD1 mutations in the first, second, and third fetuses. The fourth fetus was heterozygous. In addition, the parents were heterozygous for PLD1. This case is based on three consecutive cases of homozygosity for the PLD1 gene in the sibling cases and the fetuses with recurrent right ventricular valve dysplasia. This will elucidate the cause of recurrent congenital heart disease and intrauterine fetal death and may serve as an indicator for screening the next fetus. To date, homozygous mutations in PLD1 that repeat three times in a row are not reported, only up to two times. The novelty of this report is that it was repeated three times, followed by a heterozygous live birth. This report is consistent with previous reports that mutations in PLD1 cause right ventricular valve dysplasia. However, there have been few case reports of PLD1 mutations, and we hope that this report will contribute to elucidate the causes of congenital heart disease, especially right ventricular valve dysplasia, and that the accumulation of such information will provide more detailed information on PLD1 mutations in heart disease. © 2023. BioMed Central Ltd., part of Springer Nature.

Citation

Yuki Masuda, Yoko Nagayasu, Hikaru Murakami, Ruri Nishie, Natsuko Morita, Sosuke Hashida, Atsushi Daimon, Misa Nunode, Hiroshi Maruoka, Masae Yoo, Takumi Sano, Yutaka Odanaka, Satoe Fujiwara, Daisuke Fujita, Nobuhiko Okamoto, Masahide Ohmichi. Triple repeated fetal congenital heart disease linked to PLD1 mutation: a case report. Journal of medical case reports. 2023 Sep 29;17(1):411

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 37770978

View Full Text