Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Despite having a wide range of therapeutic advantages, glycyrrhizin (GL) has few commercial applications due to its poor aqueous solubility. In this study, we combined the benefits of hydroxypropyl β-cyclodextrin (HP-βCD) supramolecular inclusion complexes and electrospun nanofibers to improve the solubility and therapeutic potential of GL. A molecular inclusion complex containing GL and HP-βCD was prepared by lyophilization at a 1:2 molar ratio. GL and hydroxypropyl β-cyclodextrin inclusion complexes were also incorporated into hyaluronic acid (HA) nanofibers. Prepared NF was analyzed for physical, chemical, thermal, and pharmaceutical properties. Additionally, a rat model of carrageenan-induced hind paw edema and macrophage cell lines was used to evaluate the anti-inflammatory activity of GL-HP-βCD NF. The DSC and XRD analyses clearly showed the amorphous state of GL in nanofibers. In comparison to pure GL, GL-HP-βCD NF displayed improved release (46.6 ± 2.16% in 5 min) and dissolution profiles (water dissolvability ≤ 6 s). Phase solubility results showed a four-fold increase in GL solubility in GL-HP-βCD NF. In vitro experiments on cell lines showed that inflammatory markers like IL-1β, TNF-α, and IL-6 were significantly lower in GL-HP-βCD NF compared to pure GL (p < 0.01 and p < 0.05). According to in vivo results, the prepared nanofiber exhibits a better anti-inflammatory effect than pure GL (63.4% inhibition vs 53.7% inhibition). The findings presented here suggested that GL-HP-βCD NF could serve as a useful strategy for improving the therapeutic effects of GL. © 2023. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.

Citation

Jitu Halder, Ritu Mahanty, Tushar Kanti Rajwar, Vineet Kumar Rai, Biswakanth Kar, Goutam Ghosh, Goutam Rath. Nanofibers of Glycyrrhizin/Hydroxypropyl-β-Cyclodextrin Inclusion Complex: Enhanced Solubility Profile and Anti-inflammatory Effect of Glycyrrhizin. AAPS PharmSciTech. 2023 Oct 02;24(7):196

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 37783948

View Full Text