Correlation Engine 2.0
Clear Search sequence regions


  • aircraft (7)
  • algorithms (1)
  • behavior (1)
  • Sizes of these terms reflect their relevance to your search.

    Safe operation is crucial for civil aviation, and reducing the risk of aircraft tire hydroplaning is essential for civil aviation safety. Here, a new 3D aircraft tire-grooved (smooth) wet pavement model based on the coupled Eulerian-Lagrangian (CEL) algorithm for the A320 aircraft was developed, and the effect of the ground contact area of an aircraft tire on the hydrodynamic pressure and support force of the tire under smooth and grooved wet pavement conditions was investigated. The results indicate that at the same taxiing speed, the ground contact area of the aircraft tire under the grooved wet-pavement condition is reduced by 19.8% compared to the smoothed wet-pavement condition, which is reduced by 6.2%. Similar patterns are observed for the hydrodynamic pressure and the critical hydrodynamic speed during landing and taking-off procedures, with upper and lower limited values obtained through the simulation results. Additionally, the predicted correction factor of the hydroplaning speed at different water film thicknesses is compared with those values obtained via the NASA formula. A comparison shows that the NASA formula underestimates the critical hydroplaning speed during the landing procedure. The corresponding correction factor will be less than 1.0 when the water film thickness reaches a critical value of 7.66 mm. Copyright: © 2023 Cai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

    Citation

    Jing Cai, Nizhi Du, Ning Zhou, Yue Li, Xuan Dai, Heng Zhang. Numerical study of the tire hydroplaning behavior of aircraft on grooved concrete pavement. PloS one. 2023;18(11):e0292701

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 37910531

    View Full Text