Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

C-di-GMP is a bacterial second messenger implicated in the regulation of many key functions including antibiotic tolerance and biofilm formation. Our understanding of how c-di-GMP exerts its action via receptors to modulate different biological functions is still limited. Here we used a c-di-GMP affinity pull-down assay coupled to LC-MS/MS to identify c-di-GMP-binding proteins in the opportunistic pathogen Stenotrophomonas maltophilia. This analysis identified Smlt3238 (SodA), a protein of the superoxide dismutase family, as a c-di-GMP-binding protein. Microscale thermophoresis showed that purified SodA protein bound c-di-GMP with an estimated dissociation constant (Kd) value of 141.5 μM. Using various in vivo and in vitro experiments, we demonstrated that c-di-GMP modulates the enzyme activity of SodA directly. Circular dichroism experiments revealed that SodA protein gradually altered its basic structure with increasing levels of c-di-GMP. Phenotypic experiments conducted in the presence of a range of intracellular c-di-GMP levels showed that SodA function is modulated by c-di-GMP. The findings thus identify a novel c-di-GMP binding protein that governs oxidative stress tolerance in S. maltophilia. Copyright © 2023 Elsevier GmbH. All rights reserved.

Citation

Xiao-Yu Sun, Jie Deng, Chenhui Zhang, Sin-Yee Fung, Kam-Leung Siu, Ying-Ying Cheng, Liumei Ye, Jiaoxia Qin, Ke Wang, Jiu-Xin Qu, Wenying Gao, Fuxiang Wang, Dong-Yan Jin, Liang Yang. Superoxide dismutase A (SodA) is a c-di-GMP effector protein governing oxidative stress tolerance in Stenotrophomonas maltophilia. Microbiological research. 2024 Jan;278:127535

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 37922698

View Full Text