Correlation Engine 2.0
Clear Search sequence regions


  • dxa scans (9)
  • female (1)
  • lipid (5)
  • meat (1)
  • photon (1)
  • root (10)
  • sex (1)
  • Sizes of these terms reflect their relevance to your search.

    The aim of the present study was to estimate the chemical composition (water, lipid, protein, mineral, and energy contents) of carcasses measured postmortem using dual-energy X-ray absorptiometry (DXA) scans of cold half-carcass or 11th rib cut. One hundred and twenty beef-on-dairy (dam: Swiss Brown, sire: Angus, Limousin, or Simmental) bulls (n = 66), heifers (n = 42), and steers (n = 12) were included in the study. The reference carcass composition measured after grinding, homogenization, and chemical analyses was estimated from DXA variables using simple or multiple linear regressions with model training on 70% (n = 84) and validation on 30% (n = 36) of the observations. In the validation step, the estimates of water and protein masses from the half-carcass (R2 = 0.998 and 0.997; root mean square error of prediction [RMSEP], 1.0 and 0.5 kg, respectively) and 11th rib DXA scans (R2 = 0.997 and 0.996; RMSEP, 1.5 and 0.5 kg, respectively) were precise. Lipid mass was estimated precisely from the half-carcass DXA scan (R2 = 0.990; RMSEP = 1.0 kg) with a slightly lower precision from the 11th rib DXA scan (R2 = 0.968; RMSEP = 1.7 kg). Mineral mass was estimated from half-carcass (R² = 0.975 and RMSEP = 0.3 kg) and 11th rib DXA scans (R2 = 0.947 and RMSEP = 0.4 kg). For the energy content, the R2 values ranged from 0.989 (11th rib DXA scan) to 0.996 (half-carcass DXA scan), and the RMSEP ranged from 36 (half-carcass) to 55 MJ (11th rib). The proportions of water, lipids, and energy in the carcasses were also precisely estimated (R2 ≥ 0.882) using either the half-carcass (RMSEP ≤ 1.0%) or 11th rib-cut DXA scans (RMSEP ≤ 1.3%). Precision was lower for the protein and mineral proportions (R2 ≤ 0.794, RMSEP ≤ 0.5%). The cattle category (sex and breed of sire) effect was observed only in some estimative models for proportions from the 11th rib cut. In conclusion, DXA imaging of either a cold half-carcass or 11th rib cut is a precise method for estimating the chemical composition of carcasses from beef-on-dairy cattle. © The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science.

    Citation

    Caroline Xavier, Isabelle Morel, Frigga Dohme-Meier, Raphael Siegenthaler, Yannick Le Cozler, Sylvain Lerch. Estimation of carcass chemical composition in beef-on-dairy cattle using dual-energy X-ray absorptiometry (DXA) scans of cold half-carcass or 11th rib cut. Journal of animal science. 2023 Jan 03;101

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 37950488

    View Full Text