Correlation Engine 2.0
Clear Search sequence regions


  • amino acid (3)
  • ASIP2 (9)
  • ASIPs (6)
  • colors white (1)
  • flounder (5)
  • open (2)
  • pigment pattern (1)
  • rt pcr (1)
  • skin fish (2)
  • Sizes of these terms reflect their relevance to your search.

    We investigated the involvement of agouti-signaling proteins (ASIPs) in morphological pigmentation and physiological color change in flatfishes. We isolated ASIP1 and 2 mRNAs from the skin of starry flounder (Platichthys stellatus), and compared their amino acid (aa) structures to those of other animals. Then, we examined the mRNA expression levels of two ASIPs (Sf-ASIPs) in the pigmented ocular body and in the unpigmented blind body, as well as in the ordinary skin and in albino skin, in flatfishes. To investigate the role of Sf-ASIPs in physiological color change (color camouflage), we compared the expression of the two genes in two background colors (dark-green and white). Sf-ASIP1 cDNA had a 375-bp open reading frame (ORF) that encoded a protein consisting of 125 aa residues, and Sf-ASIP2 cDNA had a 402-bp ORF that encoded a protein consisting of 132 aa residues. RT-PCR revealed that the strongest Sf-ASIP1 and Sf-ASIP2 expression levels were observed in the eye and blind-skin, respectively. In Sf-ASIP1, the gene expression did not differ between the ocular-side skin and blind-side skin, nor between ordinary skin and abnormal skin of the fish. However, in Sf-ASIP2, the expression level was significantly higher in blind-side skin, compared to ocular-side skin, suggesting that the ASIP2 gene is related to the countershading body pigment pattern of the fish. In addition, the Sf-ASIP2 gene expression level was lower in the pigmented spot regions than in the unpigmented spot regions of the malpigmented pseudo-albino skins on the ocular side, implying that ASIP2 is responsible for the ocular-side pseudo-albino. Additionally, ASIP2 gene expression in the blind-side skin of ordinary fish was enhanced by a white tank, implying that a bright background color could inhibit hypermelanosis in the blind-side skin of cultured flounder by increasing the activity of the Sf-ASIP2 gene. However, we did not find any relationship of ASIPs with camouflage color changes. In conclusion, the ASIP2 gene is related to the morphological pigmentation (countershading and malpigmentation) of the skin in starry flounder, but not with physiological color changes (color camouflage) in the ocular-side skin. Copyright © 2023. Published by Elsevier Inc.

    Citation

    Duk-Young Kang, Hyo-Chan Kim. Functional relation of agouti signaling proteins (ASIPs) to pigmentation and color change in the starry flounder, Platichthys stellatus. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology. 2024 May;291:111524

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 37981006

    View Full Text