Huiyang Li, Shuo Liu, Wenjin Dai, Bingmei Yao, Yong Zhou, Sujia Si, Hairong Yu, Riguang Zhao, Fang Jin, Liqun Jiang
Journal of controlled release : official journal of the Controlled Release Society 2024 JanChanges in bodily fluid pressures, such as pulmonary artery pressure, play key roles in high-altitude pulmonary edema (HAPE) and other disorders. Smart delivery systems releasing a drug in response to these pressures might facilitate early medical interventions. However, pressure-responsive delivery systems are unavailable. We here constructed hydrostatic pressure-sensitive multivesicular liposomes (PSMVLs) based on the incomplete filling of the internal vesicle space with neutral lipids. These liposomes were loaded with amlodipine besylate (AB), a next-generation calcium channel inhibitor, to treat HAPE on time. AB-loaded PSMVLs (AB-PSMVLs) were destroyed, and AB was released through treatment under hydrostatic pressure of at least 25 mmHg. At 25 mmHg, which is the minimum pulmonary artery pressure value in HAPE, 38.8% of AB was released within 1 h. In a mouse HAPE model, AB-PSMVLs concentrated in the lung and released AB to diffuse into the vascular wall. Intravenously injected AB-PSMVLs before HAPE modeling resulted in a stronger protection of lung tissues and respiratory function and lower occurrence of pulmonary edema than treatment with free drug or non-pressure-sensitive AB-loaded liposomes. This study offers a new strategy for developing smart drug delivery systems that respond to changes in bodily fluid pressures. Copyright © 2023 Elsevier B.V. All rights reserved.
Huiyang Li, Shuo Liu, Wenjin Dai, Bingmei Yao, Yong Zhou, Sujia Si, Hairong Yu, Riguang Zhao, Fang Jin, Liqun Jiang. Pressure-sensitive multivesicular liposomes as a smart drug-delivery system for high-altitude pulmonary edema. Journal of controlled release : official journal of the Controlled Release Society. 2024 Jan;365:301-316
Mesh Tags
Substances
PMID: 38007195
View Full Text